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SUMMARY

This paper addresses the topic of evaluating and strengthening a tall building in the Los Angeles region.
Failure is characterized by the reliability index in terms that can be readily understood by structural
engineers with only a basic knowledge of probability theory. The presented formulation requires the
structural engineer to believe that the assumption of a normal or log-normal probability density function
for capacity and demand is acceptable for the evaluation and strengthening of a tall building in the Los
Angeles region. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We are about to start a journey. Like a vacation, we must have a starting ‘city’ and an ending ‘city’. In
this paper, our starting city is called ‘transparency’ and our ending city is called ‘limit state design
capacity’. The first leg of our journey is along a path we can call the ‘normal capacity and demand
trail’. It is paved with math and has several valleys and mountains to traverse that require effort. At
the end of this first leg, we reach the first city, and it is called ‘normal design capacity’. We then start
the second leg of the journey, and this path is called ‘log-normal capacity and demand trail’. As with
the first leg, it has math, valleys and mountains. At the end of this leg, we reach our second city, and it
is called ‘log-normal design capacity’. Our third leg is perhaps the most difficult, and its trail is called
‘professional judgment’. On this trail, we compare the first two cities by using our education and
training and make some decisions by using our judgment and typically less information than we would
desire. Finally, we reach our destination, and it is a city called ‘limit state design capacity’.
The formulation in this paper is viewed as a direct extension of the over half century old tradition of

a safety factor used by structural engineers. The references listed at the end of the paper provide
examples of published literature for the interested reader. These references are: Ang and Cornell
(1974), Ang and Tang (1990), Ellingwood (1994), Ellingwood (2000), Ellingwood et al. (1982),
Freudenthal (1947), Freudenthal (1956), Freudenthal et al. (1957), Hart (1982), Melchers (2002),
and Rosenblueth and Esteva (1972). In fact, there are mathematically more sophisticated structural
reliability methods available, but what is being proposed is focused on the goal of performance-based
design with transparency and professional structural engineering input for a specific building. The
proposed approach does not preclude such approaches if so desired, and the mathematics and
assumptions are understood and accepted by the structural engineer.
*Correspondence to: Gary C. Hart, Weidlinger AssociatesW Inc., 4551 Glencoe Ave., Suite 350, Marina del Rey, CA,
90292, USA.
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Structural engineers very often are turned off to structural reliability theory because they either lack
the mathematical background, do not want to put in the effort to learn it or leave the definitions of
failure and reliability index that have formed the basis of the building code for decades to others
because they do not care to learn. The intent of this paper is to present the concept of failure in
structural reliability terms that can be easily understood by any college graduate in structural engineering.
The reader is also referred to Hart (2012a, 2012b).
Structural reliability analysis requires the definition of the limit states to be addressed and the

random variables that are used to formulate the limit states. Very often, it involves assuming probability
density functions for all random variables. Selecting and defining the ‘best’ probability density function
(e.g. normal or log-normal distribution, truncated log-normal and beta) are not simple, and selections
are often based on mathematical convenience without regard to the need for the end user to really
understand all of the mathematics and assumptions involved. This paper presents structural reliability
analysis methods for limit states with either normal or log-normal capacity and demand terms. Assuming
either normal or log-normal random variables for capacity and demandwill satisfy the needs of a structural
engineer performing an evaluation and strengthening of an existing tall building in the Los Angeles
region. The reader is referred to Hart (2012a, 2012b) for discussion of normal and log-normal
random variables.
Failure in this paper is defined in one of the two ways, which are

F ¼ C � D < 0 safety margin formulationð Þ (1)

or

F ¼ C=D < 1 safety factor formulationð Þ (2)

where C= capacity term for a given limit state D = demand term for a given limit state.
Note that this is a focus on one limit state and the failure of that limit state. Failure for the structure

in total must consider the failure of all limit states.
Equation (1) is desirable when C and D are assumed to be jointly normal random variables because

then, F is a normal random variable. Equation (2) is desirable when C and D are assumed to be
jointly log-normal random variables because then, F is a log-normal random variable or, equivalently,
Z ¼ ‘n Fð Þ is a normal random variable.
2. THE STRUCTURAL RELIABILITY INDEX USING F=C�D (CASE IN WHICH C AND D
ARE JOINTLY NORMAL)

Capacity is the ability of the structure or structural member considered to resist the demand imposed on
the limit state. Demand, e.g., could be wind or earthquake loading. Capacity is often called strength.
Capacity could be a strength/force-based or a deformation-based capacity. For example, the strain
when one steel bar reaches a strain value equal to its yield strain. With the current view of good
structural engineering being displacement-based design, a deformation-based capacity in terms of
strain, displacement or rotation is preferred whenever possible.
Define the following variables and parameters:

C= capacity term of limit state = normal
D= demand term of limit state = normal
�C = expected (or mean) value of C=E[C]
�D= expected (or mean) value of D=E[D]
s2C = variance of capacity (C)
sC = standard deviation of capacity (C)
s2D = variance of demand (D)
sD= standard deviation of demand (D)
rCD= statistical correlation coefficient between capacity (C) and demand (D)
Copyright © 2012 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 21, S12–S30 (2012)
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Failure occurs if the capacity (C) is less than the demand (D).
Define the failure event as

C < D (3)

and the ‘safety margin’, F, as

F ¼ C � D (4)

Therefore, the failure event can also be expressed as {F< 0}.
Because the capacity (C) and the demand (D) are jointly normal random variables, the safety

margin, F, is also a normal random variable.
The expected (or mean) value of the safety margin, F, is

�F ¼ �C � �D (5)

and the variance of the safety margin, F, is

s2F ¼ s2C þ s2D � 2rCDsCsD (6)

The standard deviation of F, sF, is the square root of the variance of F.
The probability of failure, pF, for the case in which C and D are jointly normal is given by

pF ¼ P C < D½ � ¼ P F < 0½ � ¼ Φ �bð Þ (7)

where P[. . .] is the probability of the event defined inside the square brackets, Φ(. . .) denotes the
standard normal cumulative distribution function (of a normal random variable with zero mean and
unit standard deviation) and

b ¼
�F

sF
¼ �C � �Dð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2C þ s2D � 2rCDsCsD

q
(8)

is referred to in the literature as the reliability (or safety) index.
As shown in Figure 1, as the reliability index increases, there is less probability that a failure occurs.
Look at Equation (8) closely because the reliability index (b) takes a different form when C and D

are jointly log-normal random variables.
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Figure 1. Probability of failure versus reliability index.
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Now define the coefficient of variation of the capacity (rC) and coefficient of variation of the
demand (rD) to be

rC ¼ sC=�C (9)

from which

sC ¼ rC �C (10)

and

rD ¼ sD=�D (11)

from which

sD ¼ rD �D (12)

Therefore, Equation (8) becomes

b ¼
�C � �Dð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2C �C
2 þ r2D �D

2 � 2rCDrC �CrD �D
q (13)

Define the ‘central safety factor’ (bC) as

bC ¼ �C=�D (14)

from which

�D ¼ �C=bC (15)

Substituting Equation (15) into Equation (13) yields

b ¼
�C � �C=bCð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2C �C
2 þ r2D�C

2
=b2C

� �
� 2rCDrC �CrD �C=bCð Þ

h ir (16)

and finally,

b ¼ 1� 1=bCð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2C þ r2D=b

2
C

� �� 2 rCDrCrD=bCð Þ� �q (17)

Equation (17) is used to evaluate an existing building limit state when the demand and capacity are
jointly normal random variables. If the structural engineer determines or assumes that demand and
capacity are uncorrelated (or, equivalently, statistically independent since C and D are jointly normal),
then Equation (17) becomes
Copyright © 2012 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 21, S12–S30 (2012)
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b ¼ 1� 1=bCð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rC2 þ rD2=bC

2� �q ¼ bC � 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bCrCð Þ2 þ rD2

q (18)

Using either Equation (17) or (18), the structural engineer can, once rC, rD and rCD are determined,
calculate the value of the reliability index for a specified value of the central safety factor. Inversely,
one can determine the required value of the central safety factor (bC) for a desired (or target) value
of the reliability index. Inverting Equation (18) (for uncorrelated C and D) for bC gives

bC ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 rC2 þ rD2ð Þ � b4rC2rD2

q
1� b2rC2

(19)

Similarly, inverting Equation (17) (for correlated C and D) for bC yields

bC ¼
1� b2rCDrCrD þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4rC2rD2 r2CD � 1

� �þ b2 rC2 þ rD2 � 2rCDrCrDð Þ
q

1� b2rC2
(20)

Notice that Equation (20) reduces to Equation (19) when rCD = 0. Experience has shown that
structural engineers relate to and like to adjust their designs by using a target central safety factor.
Therefore, to illustrate this, Table 1 reports the required central safety factor bC for a given value of
the reliability index b for the case rCD = 0. Figure 2 further illustrates this interdependence and show
plots of the reliability index (b) versus the central safety factor (bC). Observe in Figure 2 the significant
effect of the statistical correlation rCD between the demand and capacity variables for specified values
of rD and rC. Recall that a negative value for the correlation coefficient means that values of the
demand D larger than the mean of D tend to be correlated with values of the capacity C lower than
the mean value of C and vice versa (i.e. the demand tends to increase as the capacity decreases
and vice versa). A positive correlation coefficient between C and D is favorable to the safety of the
structure, whereas a negative correlation coefficient is unfavorable.
It is not uncommon that structural engineers, at least for preliminary design, select a deterministic

value for the demand and, therefore to develop a design, assume no uncertainty in the demand. For
example, the service level earthquake can be taken as the 2% damped elastic response spectra for a
‘50% probability of being exceeded in 30 years’ earthquake, or the maximum considered earthquake
can be selected as the earthquake with a 2% probability of being exceeded in 50 years. In both of these
cases, the structural engineer may assume, out of convenience, certainly not reality, that the coefficient
of variation of the demand is zero, i.e. rD= 0. In the terminology of probabilistic analysis, this
operation of assuming (temporarily) a deterministic value of the demand is referred to as ‘conditioning
with respect to a specified value of the demand’.
Table 1. Target central safety factors for a target reliability index b= 3.5 (rCD= 0).

Coefficient of variation of demand rD (%) Coefficient of variation of capacity rC (%)

10 15 20 25
0 1.54 2.11 3.33 8.00
10 1.69 2.21 3.42 8.07
15 1.83 2.33 3.52 8.15
20 1.99 2.48 3.65 8.27
25 2.16 2.64 3.80 8.41
30 2.33 2.81 3.97 8.58
35 2.51 2.99 4.16 8.78
40 2.69 3.18 4.35 8.99

Copyright © 2012 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 21, S12–S30 (2012)
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If the demand is considered to be known (deterministic) for preliminary design (i.e. not a random
variable), then �D is taken as this deterministic value and rD = 0. Therefore, Equation (18) becomes

b ¼ 1� 1=bCð Þ½ �
rC

(21)

If we rearrange Equation (21), then the central safety factor can be expressed as

bC ¼ �C=�Dð Þ ¼ 1= 1� brCð Þ (22)

Figure 3 shows a plot of the minimum required central safety factor (bC) as a function of the
coefficient of variation of the capacity (rC) and the target reliability index (b) using Equation (22).
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Now consider the reliability index for uncorrelated C and D (rCD = 0), i.e. C and D are statistically
independent normal random variables. Using Equation (8), we obtain

b ¼ Reliability Index ¼ �F=sFð Þ
¼ �C � �Dð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sC2 þ sD2

p (23)

It can be shown, see Hart (2012a, 2012b), that 0.75(sC + sD) is a good approximation toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sC2 þ sD2

p
over quite a wide practical range of (sC,sD), and therefore,

b ¼ �C � �Dð Þ= 0:75 sC þ sDð Þ½ � (24)

from which

0:75bsC þ 0:75bsD ¼ �C � �D (25)

and

�C 1� 0:75brCð Þ ¼ �D 1þ 0:75brDð Þ (26)

Defining the capacity reduction factor as

f ¼ 1� 0:75brC (27)

and the load amplification factor as

g ¼ 1þ 0:75brD (28)

it follows that

g�D ¼ f�C (29)

Equation (29) is the form of the load and resistance factor design equation expressed in terms of the
expected (mean) demand �D and the expected (mean) resistance �C. Note that it is the expected value of
capacity that is multiplied by f and the expected value of demand that is multiplied by g.
Now define

Design Demand ¼ g�D (30)

Design Capacity ¼ f�C (31)

Equation (29) can be rearranged and expressed in terms of the central safety factor as

bC ¼
�C
�D
¼ g

f
¼ 1þ 0:75brDð Þ

1� 0:75brCð Þ (32)

3. THE PRESCRIBED EARTHQUAKE LOADING APPROACH WITH C AND D NORMAL
RANDOM VARIABLES

Now consider the situation where the structural engineer prescribes an earthquake loading to be used
for evaluating and strengthening an existing building. Remember that this is performance-based
Copyright © 2012 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 21, S12–S30 (2012)
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design, and therefore, there are many limit states, and what follows is to be carried out for each selected
limit state.
Recall that

�D= expected value of demand using a specified exposure time (e.g. 50 years)

The demand from any prescribed earthquake, wind or any source of loading can be expressed as

DPL= demand from prescribed load
Define

a ¼ DPL=�Dð Þ (33)

Substituting Equation (33) into Equation (29), it follows that

DPL ¼ af=gð Þ�C (34)

Define the ‘prescribed load capacity reduction factor’ to be

fPL � af=gð Þ (35)

and then Equation (34) can be expressed as

DPL ¼ fPL
�C (36)

Substituting Equations (27) and (28) into Equation (35), we obtain

fPL ¼ a 1� 0:75brCð Þ= 1þ 0:75brDð Þ (37)

It is noteworthy that the left side of Equation (36) is the prescribed load demand and the right side is
the design capacity corresponding to this prescribed load demand. The designer develops a design for
each selected limit state such that the prescribed load demand, i.e. DPL, is less than the prescribed load
capacity, i.e. fPL

�C.
The above incorporates the ratio a of the demand from the prescribed load, DPL, (e.g. a service level,

50% in 30 years, or ultimate level, 2% in 50 years, earthquake demand) to the expected value of the
demand �Dð Þ. It also incorporates the uncertainty in the demand by the inclusion of the coefficient of
variation of the demand (rD).
To illustrate the use of Equation (37), consider the case where the prescribed load is equivalent to

the expected value of the demand, i.e. when a = 1. This corresponds approximately to the service
level earthquake. Table 2 gives the prescribed load capacity reduction factors (fPL) for different values
of a, reliability index (b), coefficient of variation of the capacity (rC) and coefficient of variation of
the demand (rD). As the coefficients of variation of demand (rD) and capacity (rC) increase, the
prescribed load capacity reduction factor (fPL) decreases.
It is to be emphasized that the value of a is dependent on the prescribed load selected by the

structural engineer. The structural engineer has the freedom to select any time frame of interest and
any probability of limit state exceedance. The LATBSDC E&S committee currently has selected the
‘50% in 30 year’ earthquake and the ‘2% in 50 year’ earthquake for their procedure. However, the
structural engineer may select a shorter exposure time, e.g. 10 years and a 50% probability. This has
been shown to be beneficial for a decision maker such as a company president with a finite span of
responsibility and perceived accountability, or he or she can select a longer exposure time, e.g.
100 years, and still the 2% probability. This could be viewed as appropriate for landmark buildings
such as a new Los Angeles City Hall. The value of a is the prescribed load divided by the expected
load for the exposure time of interest. For example, a could be the 2% in 50-year demand divided
by the 50% in 50-year demand.
Copyright © 2012 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 21, S12–S30 (2012)
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Table 2. Prescribed load capacity reduction factors.

(a) a= 1.0 and b = 0.25

Coefficient of variation of demand rD (%) Coefficient of variation of capacity rC (%)

10 15 20 25 30 35
10 0.96 0.95 0.94 0.94 0.93 0.92
15 0.95 0.95 0.94 0.93 0.92 0.91
20 0.95 0.94 0.93 0.92 0.91 0.90
25 0.94 0.93 0.92 0.91 0.90 0.89
30 0.93 0.92 0.91 0.90 0.89 0.88
35 0.92 0.91 0.90 0.89 0.89 0.88
40 0.91 0.90 0.90 0.89 0.88 0.87

(b) a= 1.5 and b= 3.0

Coefficient of variation of demand rD (%) Coefficient of variation of capacity rC (%)

10 15 20 25 30 35
10 0.95 0.81 0.67 0.54 0.40 0.26
15 0.87 0.74 0.62 0.49 0.36 0.24
20 0.80 0.69 0.57 0.45 0.34 0.22
25 0.74 0.64 0.53 0.42 0.31 0.20
30 0.69 0.59 0.49 0.39 0.29 0.19
35 0.65 0.56 0.46 0.37 0.27 0.18
40 0.61 0.52 0.43 0.35 0.26 0.17
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4. THE STRUCTURAL RELIABILITY INDEX USING F=C/D (CASE IN WHICH C AND D
ARE JOINTLY LOG-NORMAL)

Now consider the case in which C and D are assumed to be jointly log-normal random variables. This
case is the one most often assumed by building load committees. The ‘safety factor’ is defined as

F ¼ C=Dð Þ (38)

from which

‘nF ¼ ‘nC � ‘nD (39)

Defining

Z ¼ ‘nF (40)

X ¼ ‘nC (41)

Y ¼ ‘nD (42)

it follows that

Z ¼ X � Y (43)

Because C and D are assumed to be log-normal random variables, it follows that X and Y are jointly
normal random variables. Random variable Z, being a linear combination of jointly random variables X
and Y, is also normal.
Note that Z is not the ratio ofC overD, which is F, but the natural log of F, i.e.Z ¼ ‘nF ¼ ‘nC � ‘nD.
Copyright © 2012 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 21, S12–S30 (2012)
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The expected (mean) value of Z is

�Z ¼ �X � �Y (44)

By using the fact that C is log-normal and consequently X ¼ ‘nC is normal, it can be shown
(Ang and Tang, 2007) that

�X ¼ ‘n�C � s2X=2
� �

(45)

and

s2X ¼ ‘n 1þ r2C
� �

(46)

Therefore, substituting Equation (46) into Equation (45), it follows that

�X ¼ ‘n�C � 1=2ð Þ‘n 1þ r2C
� �

(47)

Note that the expected value (�X) of the normal random variable X ¼ ‘nC is now expressed in terms
of the expected value (�C) and coefficient of variation (rC) of the log-normal random variable C.
Similarly to Equation (47), but for the random variable Y ¼ ‘nD,

�Y ¼ ‘n�D� 1=2ð Þ‘n 1þ r2D
� �

(48)

Also note that the expected value (�Y) of the normal random variable Y ¼ ‘nD is now expressed in
terms of the expected value (�D) and coefficient of variation (rD) of the log-normal random variable D.
Now, we can write

�Z ¼ �X � �Y
¼ ‘n�C � ‘n�D½ � � 1=2ð Þ‘n 1þ r2C

� �� 1=2ð Þ‘n 1þ r2D
� �� � (49)

and

�Z ¼ ‘n �C=�Dð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2D
1þ r2C

s" #
(50)

From Equation (14), the central safety factor (bC) is defined as

bc ¼ �C=�D (51)

so it follows that

�Z ¼ ‘n bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2D
1þ r2C

s" #
(52)

The above equation expresses the expected value of the normal random variable Z in terms of the
expected values, �C and �D, and the coefficients of variation, rC and rD, of jointly log-normal random
variables C and D.
Copyright © 2012 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 21, S12–S30 (2012)
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The variance of Z is

s2Z ¼ s2X þ s2Y � 2rXYsXsY
¼ ‘n 1þ r2C

� �þ ‘n 1þ r2D
� �� 2rXY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘n 1þ r2Dð Þ
p (53)

The reliability index is now

b ¼
�Z

sZ
¼

‘n bc

ffiffiffiffiffiffiffiffiffi
1þr2D
1þr2C

r	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C
� �þ ‘n 1þ r2Dð Þ � 2r‘nC;‘nD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘n 1þ r2Dð Þ
pr (54)

Inversely, one can determine the required value of the central safety factor (bC) for a desired value of
the reliability index (b). Inverting Equation (54) (for correlated C and D) for bC gives

bC ¼
exp b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C
� �þ ‘n 1þ r2Dð Þ � 2r‘nC;‘nD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘n 1þ r2Dð Þ
pr� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2Dð Þ= 1þ r2C

� �q (55)

Now, assuming that C and D are statistically uncorrelated random variables (or, equivalently,
statistically independent since C and D are jointly log-normal), it follows that the variance of Z is

s2Z ¼ s2X þ s2Y
¼ ‘n 1þ r2C

� �þ ‘n 1þ r2D
� � ¼ ‘n 1þ r2C

� �
1þ r2D
� �� � (56)

So the reliability index in Equation (54) reduces to

b ¼
�Z

sZ
¼

‘n bC

ffiffiffiffiffiffiffiffiffi
1þr2D
1þr2C

r	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C

� �
1þ r2Dð Þ� �q (57)

The probability of failure, pF, for the case in which C and D are jointly log-normal, is given by

pF ¼ P
C

D
< 1

	 

¼ P ‘n

C

D

� �
< 0

	 

¼ P Z < 0½ � ¼ Φ �bð Þ (58)

When we were considering the case in which C and D are jointly normal random variables, the
reliability index was b ¼ �F=sF where F=C�D, but here, the reliability index is �Z=sZ , where Z ¼
‘nC � ‘nD. Also, note that the reliability index is a different expression of �C; �D; rC and rD than in
the case in which C and D are jointly normal, compare Equations (16) and (54) for C and D correlated
and Equations (18 and (57) for C and D uncorrelated.
Copyright © 2012 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 21, S12–S30 (2012)
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Using the first-order approximation ‘n 1þ Vð Þ ffi V , we have

‘n 1þ r2C
� � ffi r2C

‘n 1þ r2D
� � ffi r2D

(59)

First, consider the numerator of the right-hand side of Equation (57), which is

�Z ¼ ‘n �C=�D½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2D
1þ r2C

s( )
(60)

Therefore,

�Z ffi ‘n �C=�Dð Þ � r2C=2
� �þ r2D=2

� �
¼ ‘n �C=�Dð Þ þ 1

2= Þ r2D � r2C
� �� (61)

Using a first-order approximation, it follows that

1=2ð Þ r2D � r2C
� � � 0 (62)

and therefore,

�Z ffi ‘n �C=�Dð Þ (63)

Using Equations (53) and (59) and assuming rXY = 0, we obtain

s2Z ¼ s2X þ s2Y ¼ ‘n 1þ r2C
� �þ ‘n 1þ r2D

� � ffi r2C þ r2D (64)

The standard deviation of Z is the square root of the sum of squares of the coefficients of variation of
C and D, and it has no units.
The reliability index in Equation (57) then becomes

b ¼ �Z=sZð Þ ffi ‘n �C=�Dð Þ½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2C þ r2D

q
(65)

It can be shown that 0.75(rD+ rC) is a good approximation to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2D þ r2C

p
over quite a wide range of

(rC,rD), and therefore,

b ¼ ‘n �C=�Dð Þ= 0:75 rC þ rDð Þ½ � ¼ ‘n bCð Þ= 0:75 rC þ rDð Þ½ � (66)

and then,

0:75brC þ 0:75brD ¼ ‘n �C=�Dð Þ (67)

from which
�D exp 0:75brD½ � ¼ �C exp �0:75brC½ � (68)

Defining the capacity reduction factor as

f ¼ exp �0:75brC½ � (69)

and the load amplification factor as
Copyright © 2012 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 21, S12–S30 (2012)
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g ¼ exp 0:75brD½ � (70)

it follows that

g�D ¼ f�C (71)

Equation (71) is the form of the load and resistance factor design equation expressed in terms of the
expected (mean) demand �D and expected (mean) resistance �C. Note that it is the expected value of
capacity that is multiplied by f and the expected value of demand that is multiplied by g.
It is very important to note that Equation (71) is the same as Equation (29), but Equations (69) and

(70) are not the same as Equations (27) and (28).
Now, as before, define

Design Demand ¼ g�D (72)

Design Capacity ¼ f�C (73)

Therefore, Equation (71) can be rearranged and expressed in terms of the central safety factor as

bC ¼
�C
�D
¼ g

f
¼ exp 0:75b rC þ rDð Þ½ � (74)

Table 3 provides values for the target central safety factor using Equation (74). This table can now
be compared with Table 1 to show the impacts of the decision where C and D are normal (Table 1) or
log-normal (Table 3).
5. THE PRESCRIBED EARTHQUAKE LOADING APPROACH WITH C AND D LOG-NORMAL
RANDOM VARIABLES

As before, from our discussion of the normal C and D, �D= expected value of demand using a specified
exposure time (e.g. 50 years) DPL= demand from prescribed loadand repeating Equation (33),

a ¼ DPL=�Dð Þ
Also, the ‘prescribed load capacity reduction factor’ from Equations (71) and (35) is

fPL � af=gð Þ
Equation (71) can be rewritten as was carried out to obtain Equation (36) to obtain

DPL ¼ fPL
�C

By using f and g from Equations (69) and (70), respectively, it follows that
Table 3. Target central safety factor for target reliability index of 3.5.

Coefficient of variation of demand rD (%) Coefficient of variation of capacity rC (%)

10 15 20 25 30 35
10 1.69 1.93 2.20 2.51 2.86 3.26
15 1.93 2.20 2.51 2.86 3.26 3.72
20 2.20 2.51 2.86 3.26 3.72 4.24
25 2.51 2.86 3.26 3.72 4.24 4.83
30 2.86 3.26 3.72 4.24 4.83 5.51
35 3.26 3.72 4.24 4.83 5.51 6.28
40 3.72 4.24 4.83 5.51 6.28 7.16
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fPL ¼ a exp �0:75brCð Þ½ �= exp 0:75brD½ �
¼ a exp �0:75b rC þ rDð Þ½ � (75)

Equation (75) gives the prescribed load capacity reduction factor for log-normalC andD. It is important
to note that Equation (75) is different from Equation (37), which applies for normal C and D.
6. COMPARISON OF NORMAL AND LOG-NORMAL CASES

With all of the math that preceded this part of the paper, it seems appropriate to take a step back and to
summarize the key points. It is especially important to reflect on the impact of the decision whether the
capacity and demand are either normal or log-normal random variables.

6.1. Reliability index

Figure 4 shows the plot of the reliability index with varying bC and rCD using the following equations
for the normal and log-normal cases.

6.1.1. Normal random variables

b ¼ 1� 1=bCð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2C þ r2D=b

2
C

� �� 2 rCDrCrD=bCð Þ� �q (76)

6.1.2. Log-normal random variables

b ¼
�Z

sZ
¼

‘n bc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2Dð Þ= 1þ r2C

� �qh ih i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C
� �þ ‘n 1þ r2Dð Þ � 2r‘nC;‘nD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘n 1þ r2Dð Þ
pr (77)

6.2. Central safety factor

Figure 5 shows the plot of the central safety factor with varying b and rC with assumed rD ¼
0%; rCD ¼ r‘nC;‘nD ¼ 0 using the following equations for the normal and log-normal cases.
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6.2.1. Normal random variables

bC ¼
1� b2rCDrCrD þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4rC2rD2 r2CD � 1

� �þ b2 rC2 þ rD2 � 2rCDrCrDð Þ
q

1� b2rC2
(78)

6.2.2. Log-normal random variables

bC ¼
exp b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C
� �þ ‘n 1þ r2Dð Þ � 2r‘nC;‘nD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘n 1þ r2C
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘n 1þ r2Dð Þ
pr� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2Dð Þ= 1þ r2C

� �q (79)

It is very important to note that Equations (76)–(79) allow the structural engineer to assign a value
for the correlation between capacity and demand and thus account for any correlation.

6.3. Capacity reduction factor and load amplification factor

Following are the equations for the capacity reduction factor and load amplification factor for the
normal and log-normal cases. Note that for the derivation of Equations (80)–(85), it was necessary
to assume that the capacity and demand are not correlated (rCD = 0).

6.3.1. Normal random variables

g ¼ 1þ 0:75brD (80)

f ¼ 1� 0:75brC (81)

6.3.2. Log-normal random variables

g ¼ exp 0:75brD½ � (82)

f ¼ exp �0:75brC½ � (83)

6.4. Prescribed load capacity reduction factor

Figure 6 shows the plot of the prescribed load capacity reduction factor with varying b and rC with
assumed rD= 30% and a = 1 using the following equations for the normal and log-normal cases.
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6.4.1. Normal random variables

fPL ¼ a 1� 0:75brCð Þ= 1þ 0:75brDð Þ (84)

6.4.2. Log-normal random variables

fPL ¼ a exp �0:75brCð Þ½ �= exp 0:75brD½ �
¼ a exp �0:75b rC þ rDð Þ½ � (85)

7. SUMMARY

The step by step procedure to evaluate the prescribed load capacity reduction factor, fPL, is shown in
Figure 7 and explained in this section.
Step 1:
Copyright © 2012 Jo
Select limit state for design such as cracking of concrete, first yield of reinforcing
steel or shear failure.
Step 2:
 Calculate the means of capacity and demand (�C and �D) of selected limit state and
then estimate the coefficients of variation of capacity and demand (rC and rD).
Step 3:
 Determine the consequences of failure: whether the failure is ductile with average
consequences or sudden failures with serious consequences.
Step 4:
 Select target reliability index (b). For example, b is taken between 3 and 3.5 for duc-
tile failures with average consequences of failure and between 3.5 and 4 for sudden
failures with serious consequences. The exposure time can have an impact on the
target value selected for b.
Step 5:
 Determine whether the capacity and demand have a normal or log-normal probability
distribution pattern.If the capacity and the demand are determined to have a ‘normal’
probability distribution pattern from Step 5, then
Step 6:
 Safety margin, F, is C�D, and the failure event can be expressed as F< 0.

Step 7:
 Calculate the expected value of the safety margin, F, which is �F ¼ �C � �D.

Step 8:
 Calculate the standard deviation of the safety margin (sF). The standard deviation of

the safety margin is sF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sC2 þ sD2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CrCð Þ2 þ �DrDð Þ2

q
if the capacity and

the demand are uncorrelated.
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Step 9:
Copyright © 2012 Jo
Calculate the reliability index, b, which is

b ¼ �F=sF ¼ �C � �Dð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CrCð Þ2 þ �DrDð Þ2

q
¼ bC � 1ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bCrCð Þ2 þ rD2

q

Steps 10 and 11:
 Calculate the design capacity for the considered limit state, which is fPL
�C, where

fPL = a(1� 0.75brC)/(1 + 0.75brD).

Step 12:
 If the capacity and the demand are determined to have a ‘log-normal’ probability

distribution pattern from Step 5, then safety factor, F, is C/D, and the failure event
can be expressed as F< 1From F= (C/D), ‘nF ¼ ‘nC � ‘nDDefining Z ¼ ‘nF;X ¼
‘nC and Y ¼ ‘nD, it follows that Z=X�Y and the failure event can be expressed as
Z< 0 or ‘nF < 0.
Step 13:
 Calculate the expected value of Z, which is �Z ¼ �X � �Y ffi ‘n �C=�Dð Þ.

Step 14:
 Calculate the standard deviation of Z. The standard deviation of Z is sZ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rC2 þ rD2
p ffi 0:75 rC þ rDð Þ if the capacity and the demand are uncorrelated.
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Step 15:
Copyright © 2012 Jo
Calculate the reliability index, b, which is

b ¼ �Z=sZ ffi ‘n �C=�Dð Þ=0:75 rC þ rDð Þ ¼ ‘n bCð Þ=0:75 rC þ rDð Þ
Steps 16 and 17:
 Calculate the design capacity for the considered limit state, which is fPL
�C, where

fPL = a exp[�0.75b(rC + rD)].
8. LOOKING FORWARD

The capacity reduction factor is one of the three options for evaluation and strengthening but the current
preferred approach of the LATBSDC E&S committee for both the service level (50% probability of
exceedance in 30 years) and the ultimate level (2% probability of exceedance in 50 years) earthquakes.
This approach probably has a long life for the service level earthquake because the structural analysis
model is typically a linear analysis model using effective stiffness properties for structural members.
However, it is clear that for both nonlinear and linear structural analyses, the demand and capacity cannot
by some structural engineers be considered to be independent because the demands (e.g. strains and
displacements) are dependent on the limit state capacities. Currently, the minimum computer run time
for a well-developed nonlinear time history analysis can be many hours. As this run time decreases, the
simulation approach in structural reliability theory (i.e. also called the Monte Carlo approach) will
probably become the method of choice for the ultimate level earthquake. This approach is currently used
in a low level way since the LATBSDC criterion [Los Angeles Tall Buildings Structural Design Council
(2011)] requires multiple nonlinear time history computer analyses using the expected value of the
structural parameters in the nonlinear model.
8. CONCLUSION

Transparency has been achieved with the presented development of the capacity reduction factor for
demands and capacities that are normal or log-normal random variables. The references that follow
are all excellent and present material that formed the foundation of this paper.
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